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Ahsrruct-It is shown that, for a ternary feedback random access 
channel with a Poisson arrival process, 0.5 is an upper bound to the 
throughput for all “degenerate intersection” algorithms (DIA’s) and first- 
come first-served algorithms (FCFSA’S). As a by-product, the nested 
FCFSA with the largest throughput is found for the random access channel 
with a Bernoulli arrival process &ith parameter p. For p > 0.018, this 
algorithm has the highest throughput over all DIA’s and FCFSA’s. Lastly, 
it is shown that, for some values of p, a non-DIA, non-FCPSA has a higher 
throughput than the optimum DIA or FCFSA. 

I. INTRODUCTION 

E CONSIDER the problem of a large distributed 
population of occasionally active users attempting 

to communicate over a single shared channel such as a 
satellite link or a coaxial cable: This problem is referred to 
as the multiple-access problem. Whenever two or more 
users attempt to transmit messages at the same time, ,a 
collision occurs and the messages involved are lost. When 
this happens a collision resolution algorithm (CRA) is used 
to control retransmissions of the lost messages so that 
eventually they are successfully transmitted. The focus of 
much research has been to devise collision resolution al- 
gorithms that maximize the channel throughput while 
keeping the expected message delay finite. Finding an 
upper bound on the throughput achievable by CRA’s has 
also been of considerable interest to workers in this area. 

The slotted ALOHA system [l] included a primitive 
form of a collision resolution algorithm. A tree search 
algorithm devised by Capetanakis [2] and later improved 
by Massey [3] was the first algorithm that guaranteed finite 
message delays for a’range of offered traffic rates. Gallager 
developed a time-window algorithm [4] which transmits 
messages in a first-come first-served (FCFS) order and 
achieves a maximum throughput (in packets per slot) of 
0.4871. Humblet and Mosely [5] refined this algorithm, 
while still maintaining the FCFS property, and obtained 
the highest throughput (= 0.4877) achieved thus far for 
any FCFS collision resolution algorithm. Recently, 
Vvedenskaya and Pinsker [6] have introduced a modifica- 
tian of the Humblet-Mosely algorithm, leading to an 
improvement in the throughput in the seventh decimal 
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place. Interestingly, this modified algorithm is not FCFS, 
but belongs to a different class of algorithms called degen- 
erate intersection algorithms (DIA’s), to be defined later. 
To this date, the throughput achieved in [6] is the best 
lower bound to the maximum throughput of all algorithms. 

The first upper bound to the maximum throughput was 
obtained by Pippenger [7] who, by using an information- 
theoretic approach, obtained the upper bound 0.744. 
Humblet [8] decreased this bound to 0.704. Molle [9] was 
the first to introduce the concept of a helpful genie. He 
showed that the optimal genie-aided algorithm achieved a 
throughput of 0.6731. Since any algorithm without a genie 
could not exceed the throughput achieved by an optimal 
genie-aided algorithm, this number constitutes an upper 
bound to the throughput for all algorithms. Cruz and 
Hajek [lo] used ‘a less helpful genie to obtain the tighter 
upper bound ‘of 0.6215. The tightest upper bound to the 
maximum throughput obtainable over all algorithms to 
date is 0.587 and is due to Tsybakov and Mikhailov [ll]. 
Molle [12] used a genie-aid algorithm to obtain the tighter 
bound of 0.508 for the restricted class of degenerate inter- 
section algorithms (DIA’s). A still tighter bound of 0.5 has 
been obtained by Cruz [13] for FCFS algorithms 
(FCFSA’s). The main result of this paper is to tighten the 
bound on DIA’s to 0.5. The above results have been 
computed for the case when message arrivals are Poisson. 
Another model we will be considering in this paper is the 
Bernoulli arrival model studied extensively by Molle [9], 
P21. 

In Section II of this paper, we define the system model 
and the classes of collision resolution algorithms of interest 
in this paper. In Section III, we obtain the optimal nested 
FCFSA for the Bernoulli arrival model. We show that the 
throughput of DIA’s cannot exceed 0.5 for’ the Poisson 
arrival model in Section IV. Using a method different from 
that used in [13], we show that 0.5 is also an upper bound 
on the throughput achievable by FCFSA’s. In Section V, 
we consider a mixing algorithm which is neither a DIA nor 
a FCFSA, but which achieves a throughput marginally 
higher than the optimal DIA. Finally, in Section VI we 
present our conclusions. 

II. THE MODEL AND SOME DEFINITIONS 

In this section we provide a formal description of the 
multiple-access system considered in this paper and define 
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various classes of collision resolution algorithms. Consider 
a  large and independent set of users sharing a  common 
channel. The  users generate messages of fixed duration 
called packets. The  channel is slotted and the duration of 
each slot equals the length of a  packet. Transmissions of 
packets are timed  to coincide with these slots. At the end 
of each slot, every user is informed whether the slot was 
idle (contained no  packets), had  a  successful transmission 
(contained one packet) or experienced a  collision (con- 
tained two or more packets). Throughput  is defined as the 
expected number  of successful transmissions per slot. The  
message arrival time  axis is discrete and  consists of a  
countably infinite number  of arrival points. In the Bernoulli 
arrival mode l, each arrival point has a  probability p of 
containing one message and (1 - p) of containing no  
message. The  message arrivals at different arrival points 
are independent of each other. The  message arrival process 
thus corresponds to an  infinite sequence of independent 
Bernoulli trials, each with parameter p. If there are N such 
arrival points per unit of time  and if we let N -+ cc and 
p -+ 0  in such a  way that the product S = Np is kept 
constant, then the Bernoulli process will tend to the Pois- 
son process with parameter S and a  continuous arrival time  
axis. 

A collision resolution algorithm can be  viewed as a  
sequence of tests in each of which a  set of arrival points are 
enabled, i.e., only message arrivals in that set are trans- 
m itted in the next slot. The  composit ion of the set of 
arrival points to be  enabled at any point in time  is de- 
termined from the entire past history of the composit ion of 
previously enabled sets and  their corresponding test results. 
W e  shall be  concerned with two classes of collision resolu- 
tion algorithms, DIA’s and FCFSA’s. A collision resolu- 
tion algorithm is considered to be  optimal over a  class of 
algorithms if it achieves the highest throughput possible for 
that class of algorithms. 

The  following definition of DIA’s is due  to Mo lle [12]. 
Let S be  a  set of arrival points. Define 0,(S) to be  the 
smallest number  of messages that could be  contained in S, 
given the complete channel history, up  to the start of the 
tth slot. Assume that, at the start of the tth slot, there are 
exactly n, distinct subsets (not necessarily disjoint), 
B;, B;; . . , B,$ for which 8,(B!) > 0. Such subsets will be  
called busy subsets. Let U, be  the set of points about which 
nothing is known beyond the u priori information at the 
tth slot. Let K, be  the set of points for which it is known 
that all contained message packets have been successfully 
transmitted by the t th slot. Let E, be the enabled set at the 
tth slot. 

Definition: Degenerate intersection algorithms (DIA’s) are 
defined by the following constraint on  E, 

E,nB;E {E,,B!,0} 

for all i = 1,2 . . * ,n,, t > 0 where n, = 0. 
Definition: Nested DIA’s (which are a  subset of the class 

of DIA’s) are defined by a  more restrictive constraint on  

4, 
E,nB;E {E,,0} 

for all i = 1,2 ... ,n,, t > 0 where n, = 0. 
Definition: First-come first-served algorithms (FCFSA’s) 

are those algorithms which ensure that packets are (suc- 
cessfully) transmitted in the same order as they arrived for 
transmission. 

Definition: Nested FCFSA’s, a subset of the class of 
FCFSA’s, is defined by the following constraints on  E,. 

1) If E, consists of k arrival points, then these k arrival 
points will be  the k earliest arrival points which are 
not elements of K,. 

2) n, = 0 or 1. 
3) If n, = 0, E, n U, = E,. 
4) If n, = 1, E, n Bi = E,. 

DIA’s are a  class of algorithms which include, in addition 
to some FCFSA’s (such as the Ga llager and  Humblet- 
Mosely algorithms), coin-tossing algorithms such as the 
Capetanakis and  Massey algorithms. The  Ga llager al- 
gorithm is also an  example of a  nested FCFSA. It is clear 
from the definitions that nested FCFSA’s form a  subset of 
nested DIA’s. However, the class of DIA’s does not include 
all possible FCFSA’s. 

III. THE OPTIMAL NESTED FCFSA 

W e  now outline a  method for finding the optimal nested 
FCFSA. The  method is similar to that emp loyed by 
Humblet and  Mosely [5] except that we use the Bernoulli 
arrival mode l instead of the Poisson arrival mode l. The  
algorithm is mode led as a  Markov process with three 
classes of states. The  result of enabling a  set of arrival 
points yields a  state transition. Our aim is to maximize the 
expected number  of successes per state transition. This is 
equivalent to maximizing the expected number  of successes 
per slot or the throughput. Two results from Markovian 
decision theory, the value iteration algorithm [14] and  the 
Odoni  bound [15], are used to compute the optimal al- 
gorithm and its resultant throughput. These are described 
next. 

Consider a  finite state, discrete-time, ergodic Markov 
system. After each transition, the system is in one  of N 
states i = 1,2; . ., N. For each state i, an action k = 
1,2; . *, K, is chosen. Then  4; is the probability of transi- 
tion to state j if the process is in state i and action k was 
chosen. Associated with each transition from i to j, under  
action k, is a  reward riT. Let the value function u,(n) be 
the total expected reward from the next n transitions, if the 
system is now in state i, and if an  optimal policy is 
followed. The  expected value can be  written as 

i = 1,2;.*,N. (3.1) 
Let g  be  the maximal expected gain per transition. The  

principal goal in Markov decision processes is to compute 
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g and to find the policy that achieves g. This can be done 
using the following theorem due to Odoni [15]. 

Theorem: Let all stationary policies have transition- 
probability matrices representing single-chain aperiodic 
Markovian processes. Define xi(n) by 

xi(n) = q(n + 1) - Ui@z). 
Then for any choice of boundary conditions ~~(0) 

1) 
2) 

3) 

4) 

xi(n) + g, 1 I i I N. 
L”(n) = max, xi(n) is monotonically decreasing in n 
to g. 
L’(n) = mini x,(n) is monotonically increasing in n 
to g. 
Any policy A achieving the N maxima in (3.1) for all 
IZ greater than or equal to some n,, has the maximal 
gain per transition. 

The value iteration algorithm proceeds as follows. The 
value functions u,(n), n = 1,2, * * * are computed using 
equation (3.1). This computation is carried out until L”(n) 
- L’(n) < e, where e is the maximum allowable error in 
the computation of g. Then g = 1/2[L”(n) + L’(n)], since 
L’(n) I g I L”(n) from the theorem. The optimal policy 
which achieves the maximal gain g may be determined as 
the one which achieves the N maxima in (3.1) for all 
n 2 n,. 

The value iteration equations for determining the opti- 
mal nested FCFSA can be described in terms of a state 
space with three types of states. 

H: The initial state in which n, = 0. At this point 
all the packets yet to be transmitted are 
Bernoulli distributed. An epoch corresponds to 
the time between visits to state H. 

Sl[ L]: The state in which e,(Bi) = 1 and ]B:] = L. 
S2[M]: This is the state in which B,(Bi) = 2 and ]B:] 

= M. 

The reward is set to 1 for a successful transmission and 
to 0 otherwise. As a result, the gain per state transition 
corresponds to the throughput. The value functions corre- 
sponding to the three types of states for the n th transition 
are VH[n], KSl[n, L] and VS2[n, M]; The set of value 
functions { VH[n], KSl[n, L] for L 2 0, VS2[n, M] for 
M 2 l} is equivalent to the set of value functions { ui(n); 
1 5 i I N} defined earlier. Parameters k, a and b corre- 
spond to the number of arrival points to be enabled at the 
next transition. Let q(m) denote the number of packets in 
a set of m arrival points. We then have the following 
relations : 

VX2[n + 1, M] 

= ,c”d”M{ P[q(b) = Olq(M) 2 21 VS2[n, M - b] 

+P[q(b) = ljq(M) r 2](1 + VSl[n, M - b]) 

+P[q(b) 2 21q(M) 2 2]VS2[n,b]} (3.4) 
with initial values of VH[O] = 0; VSl[O, L] = 0, L 2 0; 
and VS2[0, M] = 0, M 2 1. 

Table I summarizes the results of carrying out this 
computation for e = 10V5. For values of p 2 0.375, the 
algorithm yields numerical results equal to the lower bound 
obtained by Molle [6]. The optimal nested FCFSA achieves 
throughputs higher than 0.5 for p 2 0.018 (see Fig. 1). For 
values of p 2 0.123, the optimal nested algorithm was 
found to correspond to a “halving algorithm.” A “halving 
algorithm” is a nested FCFSA, similar to Gallager’s al- 
gorithm [4], such that whenever f3,(Bi) = 2, I&] = M, 

TABLE I 
THROUGHPUT OF THE OPTIMAL DIA (FCFSA) AND THE 

MIXING ALGORITHM 

DIA 
Optimal DIA Upper Bound 

P (FCFSA) Mixing (Molle) 

0.05 0.51459 0.51467a 0.53051 
0.10 0.53322 
0.20 0.56389 
0.30 0.60116 
0.40 0.62241 

a Mix1 incorporated. 
bMixing not employed. 

0.53359” 0.54676 
0.5647V 0.57550 
0.60116b 0.60534 
0.62241b 0.62241 

045 3 0 018 0.1 0.2 03 0.4 

P 

Fig. 1. Throughput versus Bemoullj probability p. 

VH[n + l] = F;;{P[q(k) = l] +{P[q(k) = l] +P[q(k) = O]}JW[n] 

+P[q(k) 2 2]VS2[n, k]} 

Ksl[n + 1, L] = max {P[q(a) = Olq(L) 2 l]VSl[n,L - u] 
O<u<L 

(3.2) 

+P[q(a) = llq(L) 2 l](l + VH[n]) 

+P[q(a) 2 2)q(L) 2 l]Ka[n,a]} 

* r 
(3.3) 
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1 M/2] of the points from Bi are enabled in the next slot 
( 1. ] is the floor function), whereas if 6,( Bi) = 1  then all of 
the points in Bi are enabled in the next slot. For values of 
p I 0.123, the optimal algorithm occasionally enables less 
than half of a  collision set, and  thus differs from the 
halving algorithm. 

IV. THE 0.5 BOUND FOR DIA’s AND FCFSA’s 

In this section we show that the upper  bound on  the 
throughput of all DIA’s and FCFSA’s is 0.5 for the 
Poisson arrival mode l. In addition, the optimal nested 
FCFSA will be  shown to be  identical to both the optimal 
FCFSA and the optimal DIA for p 2 0.018. An outline of 
the method used to obtain the throughput bound follows. 
W e  first show (Lemmas 1, 2, and  3) that the optimal 
FCFSA and the optimal DIA are identical to the optimal 
nested FCFSA provided the throughput achieved by the 
latter exceeds 0.5. Because we showed in the last section 
that the optimal nested FCFSA achieves throughputs higher 
than 0.5 for values of p 2 0.018, the optimal nested FCFSA 
must also be  the optimal DIA (FCFSA) for all p 2 0.018. 
W e  further show in Lemma 4  that the throughput of the 
optimal DIA increases monotonically with p. Conse- 
quently we show in Theorem 1  that, since the optimal DIA 
achieves a  throughput of 0.5 for p = 0.018, the throughput 
of the optimal DIA cannot exceed 0.5 in the Poisson lim it 
as p -+ 0. In Theorem 2, we show that the upper  bound on  
the throughput of FCFSA’s is also 0.5. 

Lemma I: For either the Bernoulli arrival mode l with 
parameter p or the Poisson arrival mode l, if the through- 
put of the optimal nested FCFSA exceeds 0.5, it will also 
be  optimal over the entire class of FCFSA’s. 

slots required to transmit the genie-labeled arrival. Since 
8,(E,) ‘= 2  and  E, - Bi had  at least one  arrival, we get no  
new information about Bi. If there is a  collision and all the 
arrival points in E, - B: are labeled idle by the genie, we 
can surmise that 8,(Bi) = 2. But an  unaided algorithm 
would have gained that information by enabling B: alone. 
Thus, if one  excludes the tagged slots, the unaided nested 
FCFSA would perform in exactly the same manner  as the 
genie aided nonnested FCFSA. The  ratio of the number  of 
genie-labeled arrival transmissions to the (tagged) slots 
required to identify and  transmit them is 0.5. Therefore, if 
the unaided, nested algorithm achieves a  throughput higher 
than 0.5, the genie-aided nonnested algorithm can only 
have a  lower throughput than the nested algorithm. Hence 
any non-nested FCFSA will have a  lower throughput than 
the optimal nested FCFSA provided the throughput of the 
latter exceeds 0.5, which proves the lemma. 

The  proof of the following lemma is given by Mo lle [12]. 
Lemma 2: If the throughput of the optimal nested DIA 

exceeds 0.5, it will also be  optimal over the entire class of 
DIA’s for the Bernoulli arrival mode l with parameter p. 

Lemma 3: For the nested DIA, for all t > 0, 

1) t9,(B!) = 1  or 2  for all i and 
2) BfnBi= 0  foralli#j. 

Proof: This result can be  shown by induction on  t. 
Let us define B’ = {B:; 1  I i I n,}. For t = 1, B’ = 0  
and  therefore the result is true. Assume it is true for t = T 
and consider all the permissible cases for a  nested DIA for 
t=T+l. 

Case I: E, n B,? = 0  for all BT E BT (i.e., E, f~ U, 
= ET). 

Proof: The method we will use here is similar to that If enabling E, results in an  idle or a  success, then 

used by Mo lle [12]. The  proof that follows is for the case of 
BT+l = BT. If enabling E, results in a  collision, then 

the Bernoulli arrival mode l. The  proof for the case of the 
BT+’ = BTU {ET} with 8,+1(ET) = 2. 

Case 2: E, n BT = E, (i.e., E, is a  subset of By) and 
Poisson arrival mode l is similar and  is therefore not in- E n  BT = 0  for all j z i 
eluded. W e  will prove this lemma by contradiction. That is, T  
we will show that FCFSA’s which have throughput greater 

If enabling E, results in an  idle, then BT+l = ( BT - 

than 0.5 and  are not nested FCFSA’s cannot be  optimal. A 
{ BT}) u { BT - ET} and er+i( BT - ET) = t3,( BT) = 1 

nonnested FCFS strategy can enable a  strict superset of a  
or 2. If enabling E, leads to a  success, then BT+ ’ = B* - 

busy set. W e  now show, using a  genie argument,  that an  
{BT} if OT(BT) = 1. If BT(BT) = 2, BT+’ = (BT - 

optimal FCFSA will never enable a  superset of a  busy set, 
{ BT}) U { BT - ET} with BT+l(BT - ET) = 1. If there is 

if the throughput of the optimal FCFSA exceeds 0.5. 
a  collision, then BT+l = (BT - { Bz’}) U E,, with 

Let us consider a  genie-aided FCFSA which possibly 4+1(G) = 2. 

enables a  superset of a  busy set, and  compare it with an  
In addition, all the new busy sets created in both cases 

unaided algorithm which never enables a  superset of a  busy 
are disjoint from all the others. W e  have shown that the 

set but is otherwise identical. Whenever  the genie-aided 
lemma is true for t = T + 1  if it is true for t = T, thus 

FCFSA enables E,, a strict superset of a  busy set Bi, the 
proving the lemma. 

genie labels the first arrival, if any, in the set E, - Bi. The From Lemma 3  it is clear that a  nested DIA either 
genie also labels all idle points before the first arrival in enables a  subset of a  busy set disjoint from all other busy 
E, - Bi. If enabling E, leads to a  success, it is clear that sets or a  subset of the Bernoulli distributed points. By the 
any information the genie gives is redundant.  An idle is independence property of the Bernoulli arrival process, it 
impossible since B: is a  busy set. If there is a  collision and follows that the result of enabling a  subset of a  busy set or 
the genie labels an  arrival, the successful transmission of U, will be  independent of enabling a  subset of any other 
this arrival requires two slots, the slot corresponding to the busy set. Also, to preserve the stability of a  nested DIA, all 
collision which led to the labeling of the arrival and  the busy sets have to be  eventually resolved. Therefore, there is 
future slot when it is successfully transmitted. Tag  the two no  loss of generality if we enable sets in a  nested FCFS 
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manner, i.e., resolve each busy set as it is created before 
enabling another subset of U,. Therefore, since any nested 
DIA has an equivalent nested FCFSA, the optimal nested 
FCFSA obtained in the last section is also the optimal 
nested DIA. 

Lemma 4: The throughput of the optimal DIA increases 
monotonically with p. 

Proof: The proof is similar to that used by Molle [9] 
for optimal algorithms (over all classes). Consider two 
Bernoulli arrival processes with parameters p1 and p2, 
pz > pl. Let the throughput achieved by the optimal DIA 
for the Bernoulli arrival process with parameter p2 be 
T( p2). Suppose there exists a genie which identifies certain 
idle arrival points in the Bernoulli arrival process with 
parameter p1 in the following way. The genie looks at each 
idle arrival point and independently tags it as an idle (with 
probability pg = (1 - p1/p2)/(1 - pl)) or ignores it (with 
probability 1 - p,). The untagged points now correspond 
to a Bernoulli arrival process with parameter pz. Since 
there is no advantage in enabling the tagged idle points, the 
maximum throughput achievable by the genie-aided al- 
gorithm for a Bernoulli arrival process with parameter p1 
is that achieved by the optimal algorithm for a Bernoulli 
process with parameter p2, i.e., T(p,). Therefore the 
throughput achieved by an optimal unaided algorithm for 
a Bernoulli process with parameter p1 cannot exceed T( p2), 
i.e., T(p,) I T(p,). Since this result is true for any pair 
( pl, pz) where p1 < p2, the lemma follows. 

Theorem I: For the Poisson arrival model, the 
throughput of the optimal DIA cannot exceed 0.5. 

Proof: In the previous section we found the optimal 
nested FCFSA. We have shown, using Lemma 3, that the 
optimal nested FCFSA would also be the optimal nested 
DIA. But the optimal nested FCFSA (DIA) achieved 
throughputs higher than 0.5 for p 2 0.018. Therefore, by 
Lemma 2, it is also the optimal DIA for p 2 0.018. For a 
value of p = 0.018, the optimal DIA achieved a through- 
put of 0.5. Consequently, by Lemma 4, the optimal DIA 
cannot achieve throughputs greater than 0.5 for p < 0.018. 
In particular, this bound is valid if we let p + 0 and 
N + cc in such a way that the product S = Np is kept 
constant, so that the Bernoulli process will tend to the 
Poisson process with parameter S. Therefore, for the Pois- 
son arrival model, the throughput of the optimal DIA 
cannot exceed 0.5. 

Theorem 2: For the Poisson arrival model, the 
throughput of the optimal FCFSA cannot exceed 0.5. 

Proof: Consider the two following statements. 
Statement A: For the Poisson arrival model, the opti- 

mal FCFSA achieves a throughput greater than 0.5. 
Statement B: For the Poisson arrival model, there 

exists a DIA with a throughput greater than 0.5. 
In Lemma 1 we showed that if Statement A were true, 

the optimal FCFSA would be a nested FCFSA. But a 
nested FCFSA is also a (nested) DIA. Therefore, if State- 
ment A were true, it would imply that Statement B is also 

true. But we know from Theorem 1 that Statement B is 
false. Thus Statement A is false, which proves the theorem. 

V. THE MIXING ALGORITHM 

In this section we show, by introducing a mixing al- 
gorithm, that a non-DIA, non-FCFSA can achieve higher 
throughputs than the optimal FCFSA (DIA) for some 
values of p. Consider the case of three arrival points 
(% a27 us), two or more of which are known to have 
message packets awaiting transmission. In the usual 
FCFSA, a, (or a, and u2) would be the next point to be 
tested. Instead (see Fig. 2) we enable a, along with b,, a 
point taken from the unknown (Bernoulli distributed) set. 
We will refer to the procedure shown in Fig. 1 as Mixl. If, 
instead of using the FCFS procedure for the halving al- 
gorithm, Mix1 is incorporated, improvements in through- 
put over the optimal FCFSA (DIA) can be realized (see 
Table I). A set of recursive equations can be used to 
compute the throughput of the halving algorithm, which 
can then be modified to include Mixl. The functions 
involved are defined below. 

Test (al. 02,03 1 
I 

Tesi bt 

I; 

I 
Test a3 Ted02 Ad 

Test (62.03) 
4 IT 

End Teat a3 

c T 
A I 

T 

Test a2 End End 

T 
I 

Test 03 

T 
I 

End 

Fig, 2. Mixing with one arrival point from unknown set. I: Idle. 77 
Successful transmission. C: Collision. 

H[x]: The expected number of queries in one epoch 
when x points are initially enabled. 

Gi[ M]: The expected number of queries required ‘to 
resolve a set of M arrival points, i or more of 
which have packets to transmit, i = 1,2. 

N[x]: The expected number of arrival points re- 
solved in one epoch when x points are ini- 
tially enabled. 

Mi[ L]: The expected number of arrival points re- 
solved when L points, with i or more packets 
to transmit, are processed by the algorithm, 
i = 1,2. 

It can be shown that C, the throughput of the algorithm, 
is 

C = E[successes/epoch]/E[queries or slots/epoch] 
{by definition} 

= maxpN[x]/H[x], 
x 2 2. 



PANWAR et al.: THROUGHPUT OF DEGENERATE INTERSECTION 

The recurrence equations required to compute H[ x] and  
N[x] in order to carry out the above maximization are the 
following 

H[X] = 1  + (1 -(l -p)” - xp(1 -p)“-‘}G2[x], 
x > 1  (5.1) 

G2[K] = 1  +{P[q(yl) = O ]q(K) 2  2]G2[K-yl] 

+P[q(yl) = l]q(K) 2  2]Gl[K - yl] 

+Phbl) 2  ‘4cdK) 2  21G2bl1h 
K> 3, yl =]K/2] (5.2) 

G l[L] = 1  + P[q(y2) 2  2]q(L) 2  l]G2[L], 
L 2 3, y2 = L. (5.3) 

Boundary conditions: 
G l[l] = 1.0 

G1[2] = 1.0 + 2{1 +(l -p)‘- 2(1 -p)} 

/(l - (1 -P)‘) 
G2[1] = 0.0 
G2[2] = 2.0; 

N[x] = x(1 - p)” + x2p(l - p)“-’ 

+{1 -(l -p)” - xp(1 -p)“-‘}M2[x], 
x > 1. (5.4) 

M2[K] = P[q(yl) = Olq(K) 2 2]{M2[K-yl] +.Yyl} 

+p[q(.YQ = QI(K) 2  4{~1W -.Yll +.a 

+fG(Yl) 2  2kW>: 2  m4blL 
K2 3, yl = [K/2] (5.5) 

M l[L] = P[q(y2) = llq(L) 2 l]y2 

+p MY2) 2  2ldL) 2  11 MaQl, 
L 2 3, y2 = L. (5.6) 

Boundary conditions: 
M l[l] = 1.0 

M1[2] = 2.0 

M2[1] = 0.0 

M2[2] = 2.0. 
By computing the recursive equations (5.1) to (5.6) and  
carrying out the maximization with respect to x, we can get 
the optimal FCFS halving algorithm. To  compute the 
throughput for the m ixing algorithm M ixl, we simply 
introduce four more boundary conditions. In order to do  
this, we consider all the possible states (al, ~2, a3, bl), 
count the number  of tests required for each state, and  
compute the number  of tests required to get 

G1[3] = 1.0 +((3p2(1 -p) +p3) 

/(I - (1 - p13))G2[31 (5-7) 
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G2[3] = p2[7(1 - p’) + 16p(l - p) + 6p2] 

/[l - 0  - P)’ - 3P(l -PI’] (5 4  

M1[3] = 3.0 +(3p2(1 -p) +p3)/(1 -(l -p)‘) 

(5.9) 
M2[3] = 4.0. (5.10) 

W e  now carry out the recursions for values of K, L 2 4 
instead of K, L 2 3. It was found that the m ixing al- 
gorithm leads to improvements ‘in throughput over the 
optimal FCFSA (DIA) algorithm for values of p  5  0.31 
when a  situation involving a  collision set of three points 
occurs with non-zero probability (see Table I). 

VI. CONCLUSIONS 

In the first part of this paper  we showed that, for a  
Poisson arrival mode l, an  upper  bound on  the throughput 
for all DIA’s and FCFSA’s is 0.5. In the second part of the 
paper  we showed that, for some values of the parameter p 
for the Bernoulli arrival mode l, a  non-DIA, non-ECFSA 
has a  higher throughput than the opt imum DIA or FCFSA. 
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